Time analyticity of the biharmonic heat equation, the heat equation with potentials and some nonlinear heat equations
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper, we investigate the pointwise time analyticity of three differential equations. They are biharmonic heat equation, equation with potentials and some nonlinear equations power nonlinearity order <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula>. The include all nonnegative ones. For first two equations, prove if id="M2">\begin{document}$ u $\end{document}</tex-math></inline-formula> satisfies growth conditions in id="M3">\begin{document}$ (x,t)\in \mathrm{M}\times [0,1] $\end{document}</tex-math></inline-formula>, then id="M4">\begin{document}$ is analytic id="M5">\begin{document}$ (0,1] Here id="M6">\begin{document}$ \mathrm{M} id="M7">\begin{document}$ R^d or a complete noncompact manifold Ricci curvature bounded from below by constant. Then obtain necessary sufficient condition such that id="M8">\begin{document}$ u(x,t) at id="M9">\begin{document}$ t = 0 Applying method, also for solvability backward which ill-posed general.</p><p style='text-indent:20px;'>For id="M10">\begin{document}$ solution id="M11">\begin{document}$ t\in it id="M12">\begin{document}$ \mathrm{M}\times[0,1] id="M13">\begin{document}$ positive integer. In addition, case when id="M14">\begin{document}$ rational number stronger assumption id="M15">\begin{document}$ 0&lt;C_3 \leq |u(x,t)| C_4 It shown may not be allowed to id="M16">\begin{document}$ As lemma, an estimate id="M17">\begin{document}$ \partial_t^k \Gamma(x,t;y) where id="M18">\begin{document}$ kernel on manifold, explicit estimation coefficients.</p><p style='text-indent:20px;'>An interesting point even smooth space variable id="M19">\begin{document}$ x implying can independent. Besides, general manifolds, hold since requires certain bounds its derivatives.</p>
منابع مشابه
Controllability of the time discrete heat equation
Abstract. In this paper we study the controllability of an Euler Implicit time discrete heat equation in a bounded domain with a local internal controller. We prove that, based on Lebeau-Robbiano’s time iteration method, the projection in appropriate filtered space is null controllable with uniformly bounded control. In this way, the well-known null-controllability property of the heat equation...
متن کاملLocal eventual positivity for a biharmonic heat equation in Rn∗
We study the positivity preserving property for the Cauchy problem for the linear fourth order heat equation. Although the complete positivity preserving property fails, we show that it holds eventually on compact sets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2022
ISSN: ['1534-0392', '1553-5258']
DOI: https://doi.org/10.3934/cpaa.2021197